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The catalytic conversion of methane to higher hydrocarbons,
in particular aromatics such as benzene, is extremely important
for the effective utilization of natural gas. This transformation
has been performed with bifunctional catalysts, most notably
metal-impregnated zeolite ZSM-5.1-7 Lunsford and co-workers8

have carefully studied the kinetics of Mo on ZSM-5, which
becomes an active catalyst for dehydroaromatization, and con-
cluded that the active phase is actually Mo2C. Various methods
of preparation such as incipient wetness and ion exchange,
however, produce nonuniform materials that have varying catalytic
activity and selectivity. We have previously developed a sonochem-
ical preparation of nanostructured, high surface area Mo2C.9 While
this form of Mo2C is a very active dehydrogenation catalyst for
cyclohexane,9 it shows no activity for methane aromatization. We
report here a simple sonochemical preparation of a bifunctional
“eggshell” catalyst for the conversion of methane to benzene.
Because the Mo2C clusters are formed during acoustic cavitation
inside a collapsing bubble, their deposition on the ZSM-5 occurs
only on the outer surface of the zeolite, and thus does not obstruct
the channels of the ZSM-5 support.

Sonochemical preparation of nanophase materials arises from
acoustic cavitation: the formation, growth, and implosive collapse
of bubbles in a liquid irradiated with high-intensity ultrasound.10

During the collapse of such bubbles, local hot spots are created
with controllable temperatures as high as∼5000 K,11 which
provides an unusual method for the decomposition of volatile
organometallic precursors. Of particular relevance for supported
catalysts, the event responsible for the formation of metal clusters
is the gas phase of the collapsing bubble, which is therefore
separate from the oxide support onto which the clusters attach.12

This inherentlygenerates “eggshell catalysts” where the outer
surface of the support holds the nanometer sized catalyst particles.
Given the surface accessibility of such catalysts, they often exhibit

enhanced activity compared to conventionally prepared ana-
logs.10

In the preparation of Mo2C/ZSM-5, Mo(CO)6 and HZSM-5
were irradiated as a slurry in hexadecane with ultrasound at 20
kHz for 3 h at 85°C under Ar flow.13 Scanning transmission
electron microscopy (STEM)14 shows that the channel structure
in the zeolite corresponding to the (200) and (020) faces was
maintained for both the control of sonicated HZSM-5 and the
sonochemically prepared Mo2C/ZSM-5. These lattice fringes
separated by 10 Å (quantified by Fourier diffractography) are
shown in Figure 1a. The dark field image of the Mo2C/ZSM-5
shows uniform particles of about 2 nm in diameter dispersed
uniformly on the outer surface of the ZSM-5 support (Figure 1b).
EDX detection was used to quantify local elemental concentrations
of the Mo2C/ZSM-5 by high-resolution spot analysis using a 1
nm beam width (which is on the order of the Mo2C particle size).
Multiple Mo2C particles (shown as lighter areas in Figure 1b)
were analyzed and compared to particle-free areas on the ZSM-5
support. Spot EDX analyses of adsorbed Mo2C particles gave a
high Mo/Si molar ratio (as high as 0.8), whereas analyses of
regions without Mo2C particles showed essentially no detectable
Mo (Mo/Si ratios are 0.04( 0.02). For comparison to our
sonochemically prepared catalyst, we synthesized Mo2C/ZSM-5
by the conventional incipient wetness method,8 impregnating
ZSM-5 with (NH4)6Mo7O24, and examined its microstructure by
STEM-EDX. The distribution of Mo2C particles onto ZSM-5 was
muchmore uniform in the sonochemically prepared samples.15

X-ray photoelectron spectroscopy (XPS) analysis,16 which has
a depth penetration of∼50 Å, confirms that the Mo2C is
concentrated on the surface of the ZSM-5 support. The electronic
states of the Mo, C, and support were also analyzed by XPS.
The Mo2C is characterized by a spin-coupled doublet for the
Mo(3d5/2) and Mo(3d3/2) peaks and the C(1s) peak at characteristic
binding energies.16b Analysis of the Mo(3d) and Si(2p) peak
intensities gave a Mo/Si mole ratio of 0.15, while the bulk
elemental analysis gave a Mo/Si mole ratio of 0.01. This
comparison means that there is more than a 15-fold enhancement
of surface Mo versus the bulk material.
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To assess the dispersion of Mo2C on the ZSM-5 support (i.e.,
the fraction of surface atoms of Mo(carbidic)), chemisorption with
CO was done at room temperature. The catalyst was pretreated
by heating it to 400°C for 3 h under high vacuum (10-5 Torr) to
remove any adsorbed gases. The chemisorption isotherms gave
a dispersion of 34% CO-binding surface metal sites per total metal
in the sample. An approximation of particle size for the Mo2C/
ZSM-5 catalyst was modeled after that used for Pt/SiO2 catalysts
(eq 1).17,18

whereNt is the total number of Mo(carbidic) atoms per particle for
a dispersion of 34%. This equation assumes the particles are
cubooctahedral withdatomic ) 0.29 nm (the inter-Mo distance for
Mo2C) and a 1:1 binding stoichiometry for CO:Mo(carbidic).19 For
34% dispersion,Nt ∼ 1700 and the particle diameter is∼3.8 nm.
This value is somewhat larger than the 2 nm particle diameter
directly observed by STEM, probably due both to the surface
Mo atoms in direct contact with the zeolite (which are unavailable
for CO chemisorption) and to partial carbon coating of the Mo2C
surfaces.

Catalytic studies on the Mo2C/ZSM-5 powder for the dehy-
droaromatization of methane to benzene were performed with a
single-pass quartz microreactor20 at 700 to 800°C. The observed
turnover frequencies based on CH4 consumption are shown as a
function of temperature in Figure 2 and compared to the sonicated
ZSM-5 control. The product distribution is comprised of ethane
and benzene, with selectivity for the latter of 60% at 700°C.
The sonicated HZSM-5 control sample treated in the same way
does not show any significant activity. Literature values for other
Mo2C/ZSM-5 catalysts are reported as approximately 6× 1017

molecules g-1 s-1 at 700°C with a 70% selectivity for benzene,8

quite comparable to the sonochemically prepared samples.
In conclusion, the sonication of molybdenum hexacarbonyl in

hexadecane with HZSM-5 has been shown to produce nanophase
Mo2C particles of about 2 nm decorating the outside of the ZSM-5
support. This eggshell catalyst has essentially all of the Mo2C on
the outer surface of the ZSM-5 support relative to the pores. The
catalyst is both active and selective for the aromatization of
methane to benzene.
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Figure 1. STEM micrographs of Mo2C/ZSM-5 prepared sonochemically
showing (a) the lattice fringes of the ZSM-5 and (b) a typical dark field
image showing Mo2C particles on the surface of the ZSM-5.
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Figure 2. Catalytic activity for dehydroaromatization of methane by
sonochemically prepared Mo2C/ZSM-5 and sonicated ZSM-5 control.
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